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On the bas i s  of t e s t s  p e r f o r m e d  at the Grenoble Univers i ty ,  the prof i les  of turbulent  v i s -  
cos i ty  a r e  ca lcula ted  as functions of the negative p r e s s u r e  gradient .  

The study concerns  developed turbulent  flow of a gas through pipes under a "cr i t i ca l"  condition c h a r -  
a c t e r i zed  by  a ve ry  rapidly  inc reas ing  negat ive p r e s s u r e  gradient  in the vicinity,  dp /dx- - - r162  All quanti t ies 
here  a r e  d imens ionless :  the veloci ty  is r e f e r r e d  to the l imit ing velocity,  the t e m p e r a t u r e  is r e f e r r e d  to the 
s tagnat ion t e m p e r a t u r e ,  the p r e s s u r e  and the densi ty  a re  r e f e r r e d  to the ent rance  (x = 0) p r e s s u r e  and den- 
s i ty  r e spec t ive ly .  The dynamic and the turbulent  v i scos i ty  a re  both r e f e r r e d  to the dynamic v iscos i ty  at 
the pipe wall .  The t r a n s v e r s e  coordinates  a re  r e f e r r e d  to the pipe radius ,  the longitudinal coordinates  a re  
r e f e r r e d  to the pipe d i ame te r .  

Among many  tes t s  concerned with this kind of flow, mos t  thorough were  those p e r f o r m e d  at the G r e -  
noble Univers i ty  [1]. As one r e s u l t  of that study, it has been  es tab l i shed  that negat ive p r e s s u r e  gradients  
d i s to r t  the veloci ty  prof i le  apprec iab ly .  Thus,  the axial  veloci ty prof i le  becomes  f la t te r  as the exit  sect ion 
of a pipe is approached .  This  prof i le  (except  for  sma l l  regions  nea r  the axis and nea r  the wall) is c lose ly  
enough approx imated  by  the power  law 

u = u , y %  (1) 

where  exponent n d e c r e a s e s  fas t  toward the exit  sect ion and becomes  approx imate ly  1/15 at a Reynolds 
number  Re ---- 5.105. The Reynolds number  is based  he re  on the pipe radius  and on the v i scos i ty  at  the 
s tagnat ion t e m p e r a t u r e .  R.  Depasse l  [1] has kindly sent us,  upon reques t ,  the or iginal  data which, together  
with c e r t a i n  l imit ing r a t io s  cha rac t e r i z ing  the c r i t i ca l  mode,  yield informat ion  about the sk in- f r ic t ion  c h a r -  
a c t e r i s t i c s  [2]. I t  has been  shown in [2] that,  if  d is tor t ion of the veloci ty  prof i le  is taken into account, the 
magni tude of ~'0 will i n c r e a s e  with a higher Mach number  and espec ia l ly  fas t  nea r  the cr i t ica l  mode.  

According to the data in [1], one can find approx ima te ly  not only the magnitude of T O but also the t u r -  
bulent  v i scos i ty  prof i le  cT as a function of the negat ive p r e s s u r e  gradient .  The shear ing  s t r e s s  is e x p r e s s e d  
by the following relat ion:  

Ou ~=(~+~) 0-y' (2) 

where  T is de te rmined  f rom the following approximation:  
�9 =(1--y) [f-~ (%--f)(l--Y)=] �9 (3) 

This  approx imat ion  sa t i s f i es  the boundary conditions ~'ty= 0 = To, Tly=l = 0. The quanti t ies f and m in (3) 
have been  se lec ted  so as  to account  for  the edge effects  at  the wall  and at  the axis of a pipe.  F r o m  the con-  
ditions a t  the wail  

�9 0 = % + R e  2k  dx 
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Fig. i, Profiles: a) of shearing 
stress - at various pipe sections; 

b) of turbulent viscosity ~- for y 

> 0.01; e) of turbulent viscosity 
e~ in the boundary layer [i) x 

= 63.9; 2) 76.3; 3) 80.3].  

we have for  the exponent  

/7"/~ --2 

~:o+ 

Zo--f 

where  

k--1 p, dp 
2k dx 

e . a  

In the limiting case of an incompressible fluid 70 + (i/2)Re kp T = 0, m = 0, and relation (3.) becomes an 

ordinary linear one T = T O (l-y). Parameter f = -(~-/~y) can be determined from the equation of flow at the 
pipe axis: 

: ~e o~u: + ~  (5) 

In o r d e r  to d e t e r m i n e  f a c c o r d i n g  to (5), it is n e c e s s a r y  to know the de r iva t ive  dUl /d  p.  F o r  this ,  ve loc i ty  
U 1 is app rox ima t e d  as fol lows:  

U:=U~h-- A (p--pk)-~ B (p--ph) 2. 

Coef f ic ien t  A is d e t e r m i n e d  f r o m  the equal i ty  A = (dUi/dp) k. On the bas i s  of  (5), 

~p-p tk p~U:~ ' 

since p' ~_o~ as x--x k. Coefficient B is found by the method of least squares. The magnitude of • can 

also be found by another and much more complicated method, namely by integrating the flow equation from 

the wall to some coordinate y. Calculations have shown that the results obtained in this way do not differ 

much from those obtained according to (3). Values of ~ based on the approximation (3) are shown in Fig. 1 

versus the y-coordinate. For illustration, the profiles of shearing stress ~- have been plotted here at three 

sections near the pipe exit (in [i] the distance from the entrance to the exit was x k = 81.2). From the dia- 
l 

gram in Fig. 1 it is easy to determine the value of I" ~-dy. Calculations show that this mean value of T de- 
0 

creases while the frictional stress increases toward the exit. Furthermore the profiles of shearing stress, 

unlike in the case of an incompressible fluid, are appreciably distorted by negative pressure gradients. In 

order to determine the eT profile according to (2), now, it is necessary to approximate the velocity profile. 
Taking note of the test results in [i], one may, with sufficient confidence, assume the power law 
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(6) 

to  be val id within a c e r t a i n  in te rva l  fib -< y -< Yv, whe re  exponent  n is d e t e r m i n e d  expe r imen ta l ly .  
pipe ax is ,  c o n s i d e r i n g  that  (0u/0y)l = 0, we le t  

U = U1 + U~r z , 

w h e r e  U 1 and U 2 a r e  d e t e r m i n e d  f r o m  the s m o o t h n e s s  condi t ions :  

~ . o ovoy O .oy  o goy  

Near the 

(7) 

T h e s e  condi t ions  y ie ld  e x p r e s s i o n s  fo r  Ut, U2, and Yv in t e r m s  of a s ingle  p a r a m e t e r :  

g l  = V n 0 - - n )  1--n 
- f f ~ - ,  U~ =- ~ V, y~ = 2 y~ 2- -n  

The p ro f i l e  a c c o r d i n g  to (7) appl ies  to Yv -< Y -< 1. 

Within  the i n t e rva l  0 _< y _< 5 b at  the wall ,  which wil l  be ca l led  the bounda ry  l aye r ,  the prof i le  is a p -  
p r o x i m a t e d  as fol lows:  

u,~ =Toy+ay2 +b9 z. 

Coef f ic ien t  a is d e t e r m i n e d  to (4)on  the b a s i s  of the equal i ty  

\ oy ~ Io -@v o' 

which fol lows f r o m  (2) on the p r e m i s e  that  (~#/dY)0 = (Se~./dY)0 = O. In o r d e r  to de t e rmine  coef f ic ien t  b 
and the b o u n d a r y - l a y e r  th i ckness  513, one uses  the smoo thnes s  condi t ions  at  y = 5b: 

Ou Ou,~ 
u=u~, Og Og 

(s) 

(9) 

F r o m  he re  we find without  dif f icul ty  tha t  

I ~'-n 2%+ nab Y~ 

~-bb] = 3 - - n  " - - V "  

This  equat ion is e a s i l y  solved for  fib by  the method  of s u c c e s s i v e  app rox ima t ions ,  a s s u m i n g  f i r s t  fib 
= 0 on the r i g h t - h a n d  s ide .  Having d e t e r m i n e d  fib f r o m  (10), we then find coef f ic ien t  b .  Calcula t ions  have 
shown that  5 b is a r a t h e r  s m a l l  quant i ty  (of the o r d e r  of 10 -3) and d e c r e a s e s  toward  the pipe exit .  

Thus ,  the p r o p o s e d  t h r e e - l a y e r  ve loc i ty  p rof i l e  involves  two p a r a m e t e r s :  exponent  n and ve loc i ty  V. 
With the value of n b a s e d  on the t e s t  data  in [1], the value of V at  any pipe sec t ion  will  be found f r o m  the 
condi t ion  of c o n s e r v i n g  the m a s s  flow ra t e  G and f r o m  the p r e s s u r e  p, both  a l so  known f r o m  t e s t s :  

f u,~ (1--y)dy+ u U' 1--u 2' l__ue (l--y) dy+ l__U2 (l--y) dy. 

o ~b vv 

Knowing the T and u p ro f i l e s  at  any pipe sec t ion  f r o m  (2), we obtain 
T 

Og 

The v i s cos i t y  # i s  a s s u m e d  to v a r y  with t e m p e r a t u r e  a c c o r d i n g  to the Suther land equat ion.  At | = eonst  
T =  1 - - v  z, 

with v = u n, u,  and U wi thin  the r e s p e c t i v e  zones  along the t r a n s v e r s e  coo rd ina t e s .  

Cons ide r ing  that  the s tagnat ion  t e m p e r a t u r e  | ~ 288~ it is not  diff icult  to de r ive  the fol lowing r e l a -  
t ion be tween  u and v: 

(1  - -  v~)  ' '5 

- 1--0.7024 v 2 " 
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Calculated r e su l t s  for  ~. as a function of y a re  shown in Fig. lb,  e. The s T p rof i l es  f a r the r  a w a y f r o m  the 
wall are shown in Fig. lb. Evidently, the turbulent viscosity is qualitatively the same function of the trans- 
verse coordinate as in the ease of an incompressible fluid [3, 4]. Unlike in the latter, however, in this case 

the maximum value of %. decreases as the magnitude of the pressure gradient increases nearer to the wail, 
while the frictional stress increases at the same time. Characteristically, the magnitude of the maximum 
~I- remains lower than that for an incompressible fluid. It appears, furthermore, that an increasing pres- 
sure gradient  r educes  a T m o s t  s ignif icant ly  at a d is tance y ~ 0.2 f rom the wall .  Nea re r  to the wall  (y 

0.05) %_ r e m a i n s  a i m o s t  independent of the p r e s s u r e  gradient  and at  y < 0.05 s T appea r s  as  an inve r se ,  
though weak,  function of p ' .  This  may  poss ib ly  be due to the inaccura te  approx imat ion  of the veloci ty  p r o -  
file at  the wall .  In the boundary l aye r ,  to be sure ,  eT also i n c r e a s e s  with inc reas ing  I-P't (Fig. lc ) .  This 
d i ag ram indicates  a lso  that in the boundary  l aye r  s T is much s m a l l e r  than the dynamic v i scos i ty  # even at 
high p r e s s u r e  g rad ien t s ,  the dynamic v i scos i ty  here  being c lose  to unity. F u r t h e r m o r e ,  the th ickness  of 
the viscous  sub layer  becom es  apparent ly  s m a l l e r  (s T ~ 0) toward the pipe exit .  This ag rees  with the r e -  
sui ts  in [5]. 

I t  is well  known that in a c r i t i ca l  l amina r  gas flow the f r ic t ion coeff icient  i n c r e a s e s  as the c r i t i ca l  
mode is approached  [6]. This means  that a negat ive p r e s s u r e  gradient ,  as has been found by the e x t e r n a l -  
p rob l em ana lys i s ,  causes  an i nc rea se  in skin f r ic t ion.  In our  case  of turbulent  flow the skin f r ic t ion  in-  
c r e a s e s ,  although the turbulent  v i scos i ty  d e c r e a s e s  on the average .  We thus have evidence that this effect  
is due primarily to the pressure gradient. 
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S u b s c r i p t s  

0 r e f e r s  to pipe wall; 
1 r e f e r s  to pipe axis ;  
k 
l ira 

NOTATION 

is the mass flow rate; 
is the isentropic exponent; 
is  the Mach mu-nber; 
is the p r e s s u r e ;  

is the pipe radius ;  
is the longitudinal velocity;  
is  the longitudinal space  coordinate ;  
is the t r a n s v e r s e  space  coordinate ;  

is the b o u n d a r y - l a y e r  th ickness ;  
is the turbulent  v i scos i ty ;  
is the s tagnat ion t e m p e r a t u r e ;  
is the dynamic v iscos i ty ;  
is the shea r ing  s t r e s s .  

r e f e r s  to pipe exit  sect ion;  
r e f e r s  to l imi t ing  value (of velocity) .  

1. 

2 ,  

3. 
4. 
5. 
6. 
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