DISTORTION OF A TURBULENT-VISCOSITY PROFILE
BY LARGE NEGATIVE PRESSURE GRADIENTS IN GAS
FLOW THROUGH PIPES

M. M. Nazarchuk, M. M. Kovetskaya, UDC 532.542 .4
and V. N. Panchenko

On the basis of tests performed at the Grenoble University, the profiles of turbulent vis-
cosity are calculated as functions of the negative pressure gradient,

The study concerns developed turbulent flow of a gas through pipes under a "critical" condition char-
acterized by a very rapidly increasing negative pressure gradient in the vicinity, dp/dx —~. All quantities
here are dimensionless: the velocity is referred to the limiting velocity, the temperature is referred to the
staghation temperature, the pressure and the density are referred to the entrance (x = 0) pressure and den-
sity respectively, The dynamic and the turbulent viscosity are both referred to the dynamic viscosity at
the pipe wall, The transverse coordinates are referred to the pipe radius, the longitudinal coordinates are
referred to the pipe diameter,

Among many tests concerned with this kind of flow, most thorough were those performed at the Gre-
noble University [1]. As one result of that study, it has been established that negative pressure gradients
distort the velocity profile appreciably. Thus, the axial velocity profile becomes flatter as the exit section
of a pipe is approached. This profile (except for small regions near the axis and near the wall) is closely
enough approximated by the power law

u=uyr, (1)

where exponent n decreases fast toward the exit section and becomes approximately 1/15 at a Reynolds
number Re = 5-10°, The Reynolds number is based here on the pipe radius and on the viscosity at the
stagnation temperature, R, Depassel [1] has kindly sent us, upon request, the original data which, together
with certain limiting ratios characterizing the critical mode, yield information about the skin-friction char-
acteristics [2]. It has been shown in [2] that, if distortion of the velocity profile is taken into account, the
magnitude of 7, will increase with a higher Mach number and especially fast near the critical mode,

According to the data in [1], one can find approximately not only the magnitude of 7, but also the tur-
bulent viscosity profile €; as a function of the negative pressure gradient. The shearing stress is expressed
by the following relation:

a
T=(ute,) a—; : 2

where T is determined from the following approximation;
= (1—Y) [f+ @& 1—5)"]- 3

This approximation satisfies the boundary conditions 7|,_, = Ty, 7|y—4 = 0. The quantities f and m in (3)
have been selected so as to account for the edge effects at the wall and at the axis of a pipe. From the con-
ditions at the wall

ap (4
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we have for the exponent

T ReEp
m==—2 2
To—/ ’
where
N , dp
R o= = e
k P dx

In the limiting case of an incompressible fluid 7 + (l/Z)RNe Ep' = 0, m = 0, and relation (3) becomes an
ordinary linear one 7 = Ty (1-y), Parameter f =—(87/8y) can be determined from the equation of flow at the
pipe axis:

du,

- —% Re (plUl +7e> P (5)

In order to determine f according to (5), it is necessary to know the derivative dU;/dp. For this, velocity
U, is approximated as follows:

Uy=U,+A(p—py)+ B (p—ps)*

Coefficient A is determined from the equality A = (dU1/ dp)y. On the basis of (5,

(;’dU1> _ 7 1=Uk
dp /e Pl

since p' —-« as x—x.. Coefficient B is found by the method of least squares. The magnitude of 7 can
also be found by another and much more complicated method, namely by integrating the flow equation from
the wall to some coordinate y. Calculations have shown that the results obtained in this way do not differ
much from those obtained according to (3). Values of 7 based on the approximation (3) are shown in Fig, 1
versus the y-coordinate, For illustration, the profiles of shearing stress 7 have been plotted here at three
sections near the pipe exit (in [1] the distance fromI the entrance to the exit was xj. = 81.2). From the dia-

gram in Fig,1 it is easy to determine the value of g 7dy. Calculations show that this mean value of 7 de-

& .
creases while the frictional stress increases toward the exit, Furthermore the profiles of shearing stress,
unlike in the case of an incompressible fluid, are appreciably distorted by negative pressure gradients. In
order to determine the &, profile according to (2), now, it is necessary to approximate the velocity profile,
Taking note of the test results in [1], one may, with sufficient confidence, assume the power law
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to be valid within a certain interval &, =y = ¥y, where exponent n is determined experimentally. Near the
pipe axis, considering that (8u/dy); = 0, we let

U=U,+Uyr, (7
where Uy and U, are determined from the smoothness conditions:
ufy~y ly—y Zu = ﬂj‘ ’ azuz = é’zg— .
? ¢ Y ly=y, 0Y ly=y, OF ly=v, 0 ly=y,

These conditions yield expressions for Uy, U,, and y, in terms of a single parameter;

1 n(l—n) _1-n
EZRRCT IR T ®

The profile according to (7) applies to yy, =y = 1.

U, =

Within the interval 0 =y = ¢ at the wall, which will be called the boundary layer, the profile is ap~
proximated as follows:

Uy, =Toly+ay*+by?. (9)

Coefficient g is determined to (4) 'on the basis of the equality

).-(3)
( 99* Jo 0y /o~
which follows from (2) on the premise that (3u/dy), = (asT/ dy), = 0. In order to determine coefficient b
and the boundary-layer thickness 6y, one uses the smoothness conditions at y = db:
ou  Ou,

U=tl,, ——=—".
dy dy

From here we find without difficulty that

( 1\ 21+-ady [/
S,/ T 3—mn TV

This equation is easily solved for &, by the method of successive approximations, assuming first &
= 0 on the right-hand side. Having determined 6y, from (10), we then find coefficient b. Calculations have
shown that & is a rather small quantity (of the order of 1073 and decreases toward the pipe exit.

Thus, the proposed three-layer velocity profile involves two parameters; exponent n and velocity V.
With the value of n based on the test data in [1], the value of V at any pipe section will be found from the
condition of conserving the mass flow rate G and from the pressure p, both also known from tests:

3y

Yu

G {7 4a —nd
| i a-na =
o b

—4) dy+j (1—y) dy.

Knowing the 17 and u profiles at any pipe section from (2), we obtain

T
R T
oy
The viscosity pis assumed tovary with temperature according to the Sutherland equation. At ® = const
T=1-1%

with v = u,, u, and U within the respective zones along the transverse coordinates,

Considering that the stagnation temperature ® =288°K, it is not difficult to derive the following rela-
tion between u and v:

B (1 . 02)1,5
W="170.7024 ¢
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Calculated results for £, as a function of y are shown in Fig.1b, ¢. The &_ profiles farther away from the
wall are shown in Fig. 1b. Evidently, the turbulent viscosity is gualitatively the same function of the trans-
verse coordinate as in the case of an incompressible fluid [3, 4]. Unlike in the latter, however, in this case
the maximum value of £. decreases as the magnitude of the pressure gradient increases nearer to the wall,
while the frictional stress increases at the same time, Characteristically, the magnitude of the maximum
&, remains lower than that for an incompressible fluid. It appears, furthermore, that an increasing pres-
sure gradient reduces £, most significantly at a distance y ~ 0.2 from the wall, Nearer to the wall (y

~ 0.05) ¢ remains almost independent of the pressure gradient and at y < 0.05 £, appears as an inverse,
though weak, function of p'. This may possibly be due to the inaccurate approximation of the velocity pro-
file at the wall. In the boundary layer, to be sure, £, also increases with increasing |-p'| (Fig.1lc). This
diagram indicates also that in the boundary layer €, is much smaller than the dynamic viscosity u even at
high pressure gradients, the dynamic viscosity here being close to unity. Furthermore, the thickness of
the viscous sublayer becomes apparently smaller (e, ~ 0) toward the pipe exit, This agrees with the re-
sults in [5],

It is well known that in a critical laminar gas flow the friction coefficient increases as the critical
mode is approached [6]. This means that a negative pressure gradient, as has been found by the external-
problem analysis, causes an increase in skin friction. In our case of turbulent flow the skin friction in-
creases, although the turbulent viscosity decreases on the average. We thus have evidence that this effect
is due primarily o the pressure gradient.

NOTATION
G is the mass flow rate;
k is the isentropic exponent;
M is the Mach number;
p is the pressure;
Re = (puim /) - (€0/2);

o]
o

is the pipe radius;

is the longitudinal velocity;

is the longitudinal space coordinhate;
is the transverse space coordinate;
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is the boundary-layer thickness;
is the turbulent viscosity;
is the stagnation temperature;

o s

7 is the dynamic viscosity;
T is the shearing stress.
Subscripts

0 refers to pipe wall;

1 refers to pipe axis;

k refers to pipe exit section;

lim refers to limiting value (of velocity}.
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